viernes, 11 de noviembre de 2011

TIPOLOGIA DE LOS AEROGENERADORES

1) Por la posición del aerogenerador:
Eje Vertical 
Su característica principal es que el eje de rotación se encuentra en posición perpendicular al suelo. Son también llamados "VAWTs", que corresponde a las siglas de la denominación inglesa "vertical axis wind turbines". Existen tres tipos de estos aerogeneradores:
1) Darrieus: Consisten en dos o tres arcos que giran alrededor del eje.
2) Panemonas: Cuatro o más semicírculos unidos al eje central. Su rendimiento es bajo.
3) Sabonius: Dos o más filas de semicilindros colocados opuestamente.

Eje horizontal 
Son los más habituales y en ellos se ha centrado el mayor esfuerzo de diseño en los últimos años. Se los denomina también "HAWTs", que corresponde a las siglas de la denominación inglesa "horizontal axis wind turbines". Un prototipo de potencia generada 1'5 Mw. Se presenta en la figura.

2) Por la posición del equipo con respecto al viento:
a) A barlovento: Las máquinas corrientes arriba tienen el rotor de cara al viento. La principal ventaja de los diseños corriente arriba es que se evita el abrigo del viento tras la torre. Con mucho la mayoría de los aerogeneradores tienen este diseño.

Por otro lado, también hay algo de abrigo enfrente de la torre, es decir, el viento empieza a desviarse de la torre antes de alcanzarla, incluso si la torre es redonda y lisa. Así pues, cada vez que el rotor pasa por la torre, la potencia del aerogenerador cae ligeramente.

El principal inconveniente de los diseños corriente arriba es que el rotor necesita ser bastante inflexible, y estar situado a una cierta distancia de la torre. Además una máquina corriente arriba necesita un mecanismo de orientación para mantener el rotor de cara al viento.

b) A sotavento: Las máquinas corriente abajo tienen el rotor situado en la cara a sotavento de la torre. La ventaja teórica que tienen es que pueden ser construidos sin un mecanismo de orientación, si el rotor y la góndola tienen un diseño apropiado que hace que la góndola siga al viento pasivamente.

Sin embargo, en grandes máquinas ésta es una ventaja algo dudosa, pues se necesitan cables para conducir la corriente fuera del generador. Si la máquina ha estado orientándose de forma pasiva en la misma dirección durante un largo periodo de tiempo y no dispone de un mecanismo de orientación, los cables pueden llegar a sufrir una torsión excesiva.

Un aspecto más importante es que el rotor puede hacerse más flexible. Esto supone una ventaja tanto en cuestión de peso como de dinámica de potencia de la máquina, es decir, las palas se curvarán a altas velocidades del viento, con lo que quitarán parte de la carga a la torre.

El inconveniente principal es la fluctuación de la potencia eólica, debida al paso del rotor a través del abrigo de la torre. Esto puede crear más cargas de fatiga en la turbina que con un diseño corriente arriba.

 
3) Por el número de palas:
a) Una pala: Al tener sólo una pala estos aerogeneradores precisan un contrapeso en el otro extremo para equilibrar. La velocidad de giro es muy elevada. Su gran inconveniente es que introducen en el eje unos esfuerzos muy variables, lo que acorta la vida de la instalación.

 b) Dos palas: Los diseños bipala de aerogeneradores tienen la ventaja de ahorrar el coste de una pala y, por supuesto, su peso. Sin embargo, suelen tener dificultades para penetrar en el mercado, en parte porque necesitan una mayor velocidad de giro para producir la misma energía de salida. Esto supone una desventaja tanto en lo que respecta al ruido como al aspecto visual.

c) Tres palas: La mayoría de los aerogeneradores modernos tienen este diseño, con el rotor mantenido en la posición corriente arriba, usando motores eléctricos en sus mecanismos de orientación. Este diseño tiende a imponerse como estándar al resto de los conceptos evaluados. La gran mayoría de las turbinas vendidas en los mercados mundiales poseen este diseño.

 d) Multipalas: Con un número superior de palas o multipalas. Se trata del llamado modelo americano, debido a que una de sus primeras aplicaciones fue la extracción de agua en pozos de las grandes llanuras de aquel continente.

4) Por la manera de adecuar la orientación del equipo a la dirección del viento en cada momento:
El mecanismo de orientación de un aerogenerador es utilizado para girar el rotor de la turbina en contra del viento. Se dice que la turbina tiene un error de orientación si el rotor no está perpendicular al viento.

Un error de orientación implica que una menor proporción de la energía del viento pasará a través del área del rotor (esta proporción disminuirá con el coseno del error de orientación) Por tanto, la eficiencia del mecanismo de orientación es fundamental para mantener el rendimiento de la instalación.

jueves, 10 de noviembre de 2011

VENTAJAS Y DESVENTAJAS

VENTAJAS

La energía eólica no contamina, es inagotable y frena el agotamiento de combustibles fósiles contribuyendo a evitar el cambio climático. Es una tecnología de aprovechamiento totalmente madura y puesta a punto.

Es una de las fuentes más baratas, puede competir e rentabilidad con otras fuentes energéticas tradicionales como las centrales térmicas de carbón (considerado tradicionalmente como el combustible más barato), las centrales de combustible e incluso con la energía nuclear, si se consideran los costes de reparar los daños medioambientales.

 El generar energía eléctrica sin que exista un proceso de combustión o una etapa de transformación térmica supone, desde el punto de vista medioambiental, un procedimiento muy favorable por ser limpio, exento de problemas de contaminación, etc. Se suprimen radicalmente los impactos originados por los combustibles durante su extracción, transformación, transporte y combustión, lo que beneficia la atmósfera, el suelo, el agua, la fauna, la vegetación, etc.

Evita la contaminación que conlleva el transporte de los combustibles; gas, petróleo, gasoil, carbón. Reduce el intenso tráfico marítimo y terrestre cerca de las centrales. Suprime los riesgos de accidentes durante estos transportes: desastres con petroleros (traslados de residuos nucleares, etc). No hace necesaria la instalación de líneas de abastecimiento: Canalizaciones a las refinerías o las centrales de gas.

 La utilización de la energía eólica para la generación de electricidad presenta nula incidencia sobre las características fisicoquímicas del suelo o su erosionabilidad, ya que no se produce ningún contaminante que incida sobre este medio, ni tampoco vertidos o grandes movimientos de tierras.

Al contrario de lo que puede ocurrir con las energías convencionales, la energía eólica no produce ningún tipo de alteración sobre los acuíferos ni por consumo, ni por contaminación por residuos o vertidos. La generación de electricidad a partir del viento no produce gases tóxicos, ni contribuye al efecto invernadero, ni destruye la capa de ozono, tampoco crea lluvia ácida. No origina productos secundarios peligrosos ni residuos contaminantes.

 Cada Kwh. de electricidad generada por energía eólica en lugar de carbón, evita:

0,60 Kg. de CO2, dióxido de carbono.

 1,33 gr. de SO2, dióxido de azufre.

1,67 gr. de NOx, óxido de nitrógeno.

 La electricidad producida por un aerogenerador evita que se quemen diariamente miles de litros de petróleo y miles de kilogramos de lignito negro en las centrales térmicas. Ese mismo generador produce idéntica cantidad de energía que la obtenida por quemar diariamente 1.000 Kg. de petróleo. Al no quemarse esos Kg. de carbón, se evita la emisión de 4.109 Kg. de CO2, lográndose un efecto similar al producido por 200 árboles. Se impide la emisión de 66 Kg. de dióxido de azufre -SO2- y de 10 Kg. de óxido de nitrógeno -NOx- principales causantes de la lluvia ácida.

La energía eólica es independiente de cualquier política o relación comercial, se obtiene en forma mecánica y por tanto es directamente utilizable.

 Al finalizar la vida útil de la instalación, el desmantelamiento no deja huellas.

 Un Parque de 10 MW:

Evita: 28.480 Tn. Al año de CO2.

 Sustituye: 2.447 Tep. toneladas equivalentes de petróleo.

Aporta: Trabajo a 130 personas al año durante el diseño y la construcción.

 Proporciona: Industria y desarrollo de tecnología.

Genera: Energía eléctrica para 11.000 familias.


DESVENTAJAS


El aire al ser un fluido de pequeño peso específico, implica fabricar máquinas grandes y en consecuencia caras. Su altura puede igualar a la de un edificio de diez o más plantas, en tanto que la envergadura total de sus aspas alcanza la veintena de metros, lo cual encarece su producción.

 Desde el punto de vista estético, la energía eólica produce un impacto visual inevitable, ya que por sus características precisa unos emplazamientos que normalmente resultan ser los que más evidencian la presencia de las máquinas (cerros, colinas, litoral). En este sentido, la implantación de la energía eólica a gran escala, puede producir una alteración clara sobre el paisaje, que deberá ser evaluada en función de la situación previa existente en cada localización.

Un impacto negativo es el ruido producido por el giro del rotor, pero su efecto no es más acusado que el generado por una instalación de tipo industrial de similar entidad, y siempre que estemos muy próximos a los molinos.

 También ha de tenerse especial cuidado a la hora de seleccionar un parque si en las inmediaciones habitan aves, por el riesgo mortandad al impactar con las palas, aunque existen soluciones al respecto como pintar en colores llamativos las palas, situar los molinos adecuadamente dejando "pasillos" a las aves, e, incluso en casos extremos hacer un seguimiento de las aves por radar llegando a parar las turbinas para evitar las colisiones.

¿QUE ES LA ENERGIA EOLICA?

La energía eólica es la energía cuyo origen proviene del movimiento de masa de aire es decir del viento.

En la tierra el movimiento de las masas de aire se deben principalmente a la diferencia de presiones existentes en distintos lugares de esta, moviéndose de alta a baja presión, este tipo de viento se llama viento geoestrofico.

ANTECEDENTES HISTORICOS

La primera y más inmediata forma de aprovechamiento de la energía eólica ha sido desde los tiempos más remotos aplicada a la navegación; las primeras referencias de la utilización de embarcaciones a vela proceden de Egipto y datan del IV ó V milenio antes de J.C.
Los molinos de viento existían ya en la más remota antigüedad. Persia, Irak, Egipto y China disponían de máquinas eólicas muchos siglos antes de J.C.; Hammurab I. rey de Babilonia, utilizó molinos accionados por el viento para regar las llanuras de Mesopotamia y para la molienda del grano. Se trataba de primitivas máquinas eólicas de rotor vertical con varias palas de madera o caña, cuyo movimiento de rotación era comunicado directamente por el eje a las muelas del molino.
Los molinos de viento fueron utilizados en Europa en la Edad Media, comenzando a extenderse por Grecia, Italia y Francia. Si el origen de las máquinas eólicas presenta notables incertidumbres, no menos lo hace su expansión por el Mediterráneo y por toda Europa. En 1724 Leopold Jacob proyecta un molino de ocho palas que mueve una bomba de pistón; en 1883 aparece el pequeño multipala americano diseñado por Steward Perry. Este molino, de unos 3 metros de diámetro utilizado para bombeo, ha sido el más vendido de la historia, llegándose a fabricar más de seis millones de unidades, de las que existen varios miles en funcionamiento. Como precursor de los actuales aerogeneradores, es necesario citar la aeroturbina danesa de Lacourt (1892), máquina capaz de desarrollar entre 5 y 25 kW.
En el año 1910 Dinamarca tenía instalada una potencia eólica de 200 MW. En los años 20 se empiezan a aplicar a los rotores eólicos los perfiles aerodinámicos que se habían diseñado para las alas y hélices de los aviones. En 1927, el holandés A.J. Dekker construye el primer rotor provisto de palas con sección aerodinámica, capaz de alcanzar velocidades en punta de pala, cuatro o cinco veces superiores la del viento incidente. Betz demostró en su famoso artículo "Die Windmuhlen im lichte neverer Forschung", (Berlín 1927), que el rendimiento de las turbinas aumentaba con la velocidad de rotación y que, en cualquier caso, ningún sistema eólico podía superar el 60% de la energía contenida en el viento.
Por lo tanto, los nuevos rotores debían funcionar con elevadas velocidades de rotación para conseguir rendimientos más elevados. La teoría demostró también que cuanto mayor era la velocidad de rotación menor importancia tenía el número de palas, por lo que las turbinas modernas podían incluso construirse con una sola pala sin que disminuyera su rendimiento aerodinámico significativamente.
 A pesar de los esfuerzos realizados y de la mayor eficacia de las nuevas turbinas, las dificultades de almacenamiento y las desventajas propias de la irregularidad de los vientos fueron la causa de que las aplicaciones basadas en el aprovechamiento del viento como recurso energético continuaran declinando hasta el final de la Primera Guerra.
 En 1931 se instaló en el Mar Negro una máquina eólica de 100 kW. Entre 1941 y 1945 estuvo funcionando en U.S.A, una unidad de 1,2 MW. Solamente en Francia, Dinamarca e Inglaterra se llevaron a cabo programas de cierta importancia. El número de aerogeneradores instalados a finales de 1991 era superior a los 21.000, según datos de la Agencia Internacional de la Energía, con un total de potencia de 2.200 MW, equivalente a dos centrales nucleares de gran potencia, y de los cuales la mitad estaban instalados en los parques eólicos de California.
A finales de 1991 la potencia de origen eólico instalada en la red eléctrica danesa ascendía a 410 MW con una producción de energía equivalente al 2,3% del consumo del país. En Alemania la potencia instalada era de 100 MW y estaba previsto alcanzar los 250 MW en breve plazo. Holanda contaba con 80 MW de potencia instalada y 100 más en construcción. El programa eólico holandés tiene previsto alcanzar los 1.000 MW hacia el año 2000 y los 2.000 MW en el 2010. España tenía en fase de realización varios proyectos que completarían los 50 MW hacia finales de 1992. El Plan de Energías Renovables, dentro del Plan Energético Nacional 1992-2000 alcanzó los 100 MW a finales de 1995, aunque las previsiones actuales sobrepasan ampliamente estas cifras.
 En cuanto al tipo de máquinas de mayor interés, los resultados obtenidos de las numerosas experiencias realizadas permitieron concretar el campo de trabajo en dos modelos: las turbinas de eje horizontal de dos o tres palas y, en menor medida, las turbinas Darrieux de eje vertical. El tamaño medio de las máquinas instaladas hasta 1990 estuvo en el rango de los 100 kW, aunque se observaba una clara tendencia ascendente. En los últimos 10 años los pequeños aerogeneradores aumentaron poco a poco sus potencias, a la vez que mejoraban su fiabilidad y reducían sus costes; las potencias medias de los aerogeneradores instalados entre 1990 y 1991 era de 225 kW; en los últimos años se han podido construir aerogeneradores con potencias mayores, desarrollados por las grandes compañías de la industria aeronáutica, que aumentan la fiabilidad de las máquinas y reducen sus costes, convergiendo hacia una nueva generación de aeroturbinas de 500 kW a 1,2 MW, lo que demuestra el alto grado de madurez alcanzado por esta tecnología.